Winter savory

Winter savory (S. montana) is a semi-evergreen bushy and woody perennial shrub, with smaller pink or white flowers and a stronger flavour. Essential oil is extracted commercially from this species and other uses are similar to summer savory.

The stems are woody at the base, diffuse, much branched. The leaves are oblong, linear and acute, or the lower ones spatulate or wedge-shaped and obtuse. Flowering is in June; the flowers are very pale purple, the cymes shortly pedunculate. It is propagated either from seeds, sown at a similar period and in the same manner as summer savory, or from cuttings and divisions of root.

Winter savory is dried and powdered and mixed with grated breadcrumbs, 'to bread their meat, be it fish or flesh, to give it a quicker relish'. It is recommended by old writers, together with other herbs, in the dressing of trout. When dried, it is used as seasoning in the same manner as summer savory, but is not employed medicinally.

Satureja thymbra, which is used in Spain as a spice, is closely allied to the savories grown in English kitchen gardens, yields oil containing about 19% of thymol. Other species of Satureia contain carvacrol. The oil from wild plants of winter savory contains 30 or 40% of carvacrol, and that from cultivated plants still more.

5.15 Other

5.15.1 Mango ginger

Mango ginger (Curcuma amada) is a rhizomatous aromatic herb of the family Zingiberaceae and is cultivated throughout India, Sri Lanka, Bangladesh and in many South-East Asian countries for its rhizomes that are used as flavouring for pickles and other dishes and also valued for their medicinal properties. The fresh as well as dried rhizomes are used for flavouring curries. The fresh cut rhizomes have the flavour and the colour of mango, hence the name mango ginger. The herb attains 60-90 cm height, leaves are long, petiolate, oblong-lanceolate, tapering at both ends, glabrous, green on both sides; flowers are white or pale yellow in spikes that occur in the centre of the leaves, lip is semi-elliptic, yellow, three-lobed, the middle lobe emarginated. The ethanol extract of rhizome showed the presence of hydroxyl, carbonyl, ester and olefin functional groups in it and also methyl, methylene, methionine proteins and olefinic proteins (Jain and Mishra, 1964; Gholap and Bandyopadhyay, 1984; Rao et al., 1989; Mujumdar et al., 2000).

High-frequency microrhizome production from the in vitro shoot cultures in liquid Murashigue and Skoog medium with 5 mg l-1 BA and 8% sucrose was reported by Nayak (2002).

The rhizomes are bitter, sweet, sour aromatic (a mixture of tastes, starting from bitter initially, turning to a sweet and then sour aromatic sensation), and cooling; used as an appetizer, carminative, digestive, stomachic, demulcent, febrifuge, alexeteric, aphrodisiac, laxative, diuretic, expectorant, anti-inflammatory and antipyretic and used in the treatment of anorexia, dyspepsia, flatulence, colic, bruises, wounds, chronic ulcers, skin diseases, pruritus, fever, constipation, hiccough, cough, bronchitis, sprains, gout, halitosis, otalgia and inflammations (Hussain et al., 1992; Warrier et al., 1994).

There is only very limited literature available on the pharmacological activity of the extract (Bhakuni et al., 1969; Rao et al., 1989). The rhizome extract of the plant exhibited an hyper-cholesteremic effect in rabbits (Pachuri and Mukherjee, 1970). The extract showed presence of an antibiotic principle with strong inhibitory activity on Aspergillus niger and Trichophyton rubrum (Gupta and Banerjee, 1972).

The rhizome is a favourite spice and vegetable owing to the rich flavour of raw mango.

The essential oils in the rhizome make it useful as a carminative and stomachic. The pulped rhizome is also used on concussions and sprains. An improved cultivar (Amba) has been developed at the high altitude research station at Pottangi, Orissa (India).

5.15.2 Lovage

Lovage (Levisticum officinale Koth.) is a perennial plant that belongs to the family Apiaceae, and is a native of Europe. Centres of lovage cultivation are located principally in central Europe. It is also found cultivated in some areas in New England, USA. It has been grown over the centuries for its aromatic fragrance, its fine ornamental qualities and, to a lesser extent, its medicinal values. All parts of the plant, including the roots, are strongly aromatic and contain extractable essential oils.

It is a pungent, clump-forming herb with rhizomatous roots and stout hollow-ridged stems up to 2.4 m. Leaves are broad and glossy; a tall flower stalk that grows 2 m high with greenish-yellow flowers in large, dense umbels are produced in summer. The fruits are ridged and golden brown in colour (Clevely and Richmond, 1999).

Chemical constituents of lovage oil are mainly phthalides and terpenoids, including n-butylidene phthalide, n-butyl-phthalide, sedanonic anhydride, D-terpineol, carvacrol , eugenol and volatile oil. The principal components of volatile oil are angelic acid and P-terpenol, coumarins, furocoumarins including psoralins, rotoside, sitosterols, resins, pinene, phellandrene, terpinine, carvacol, terpineol, isovaleric acid, umbelliferone and bergapten. Fresh leaves contain a maximum 0.5% essential oil; the most important aroma components are phthalides (ligustilide, butylphthalide and a partially hydrogenated derivative thereof called sedanolide). Terpenoids (terpineol, carvacrol) and eugenol are less important (Simon et al., 1984; Karnick, 1994b).

Najda et al. (2003) studied the composition of various compounds in various plant parts of lovage. The phenolic acids in various plant parts were as follows: roots 0.12-0.16%, herb 0.88-1.03%, stems 0.30-0.39%, leaf 1.11-1.23% and fruits 1.32-1.41%. The quantity of tannins in various plant parts was: roots 6.6%, herb 5.3%, stems 7.4%, leaf 2.7%, and fruits 1.8%. Free phenolic acids such as chlorogenic, caffeic, p-coumaric and m-coumaric were detected using HPLC.

The crop is propagated either through seeds or through root divisions. It prefers a well-drained, fertile soil. The seeds are sown outdoors during spring in a seedbed. The roots are divided in spring or autumn and planted. Mature plants require wider space, as they are large and bulky. Deep, rich moist soil and full sun or partial shade are required for better growth. The plants need to be cut back during summer to get a continuous supply of tender leaves. Fertilization with balanced organic fertilizer is required in spring and mulching is done in summer. Young flower stalks are removed to keep the foliage fresh for longer.

Harvesting is done in the second or third year of the crop and is usually in October. Young leaves, hollow main stems before flowering, sliced dried roots of 2-3-year-old plants and ripe seeds are the useful parts. The fresh roots are generally first harvested from 2-3-year-old plants. Subsequent harvests take place every third year. The fresh roots are washed, cut into approximately 13 mm thick pieces and dried.

Leaves are used in flavouring soups, salads, casseroles and stews because of their pungent, celery-like flavour. The stems are used for candied products. Roots are peeled and cooked as a vegetable. Powdered root is sometimes used as a spice. The volatile oil extracted from the roots is highly valued for use in perfumery, soaps and creams, and it has been used for flavouring tobacco products. The seeds and seed oil are used for flavouring agents in confectionery and liqueurs.

As a medicinal plant, lovage has been used as a digestive, carminative, diaphoretic, diuretic, emmenagogue, anti-dyspeptic, expectorant, stimulant and stomachic; and also as a treatment for jaundice. Current medicinal applications include use as a diuretic and for regulation of menstrual cycle. Lovage is generally recognized as safe for human consumption as a natural seasoning and flavouring agent (Karnick, 1994b).

5.15.3 Zanthoxylum spp.

The term Szechuan pepper or Japanese pepper refers to a spice obtained from a group of closely related plants of the genus Zanthoxylum, belonging to the family Rutaceae and consisting of approximately 200 species with a pan-tropical distribution. It is a large genus of aromatic, prickly trees or shrubs and is mostly distributed in the Himalayan region, furthermore in Central, South, South-East and East Asia. The most important species are Z. piperitum DC, Z. simulans Hance, Z. bungeanum Max., Z. schinifolium Sieb. and Zucc, Z. nitidum Roxb, Z. ovalifolium Wight., Z. rhetsa Pierre., Z. alatum Roxb. and Z. acanthopodium DC. All these species are widely distributed over Asia, but are not used as a spice throughout the region. All species mentioned have their place in local cuisine. The literature often gives contradicting information on the genuine species of the spice used. Zanthoxylum is a confusing genus and the information available is very scanty.

Szechuan pepper or Japanese pepper is very important in the cuisine of central China and Japan, but it is also known in parts of India, especially in the Himalayan region, and in certain regions of South-East Asia. The fruit of Z. piperitum (Japanese pepper) is the genuine source of the spice. It is a small tree and often wrongly assumed to be part of the pepper family. The spice, which is the ground husks of the berries, is common in the Szechuan region of China, and the leaves of the plant are also used in Japan as spice. The ripe fruits of the tree open out in a similar way to star anise. This spice is also known by various common names such as anise pepper,fagara, Chinese brown pepper, poivre anise, anispfeffer, pimenta de anis, pepe d'anis and Szechuan pepper.

Most Zanthoxylum species produce pungent alkamides derived from polyunsaturated carboxylic acids, stored in the pericarp. The commonly found alkamides are a-, P- and Y-sanshool and hydroxy sanshools. Total amide content in Z. piperitum is as high as 3%. Non-volatile constituents such as flavonoids, terpene alkaloids, benzophenthredine alkaloids, pyranoquinoline alkaloids, etc. were also identified. The composition of leaf oil of Z. piperitum from Japan has been reported (Kusumoto et al., 1968; Shimoda et al.,1997). The volatile compounds in the leaves were isolated by steam distillation and the aroma components were evaluated by an aroma extraction dilution analysis. The main components responsible for the aroma are glycosides such as (Z)-3-hexenol, C-6 compounds, citronellal, citronellol, geraniol and 2-phenylethanol (Kojima et al., 1997).

Xanthoxylin and (-)-sesamin are isolated from Z. piperitum (Harborne and Baxtor, 1993). P-Sanshool and Y-sanshool, unsaturated aliphatic acid amides isolated from the pericarp, were found to relax the circular muscle of the gastric body, as well as contract the longitudinal muscle of the ileum and distal colon in an experimental system using the gastrointestinal tract isolated from a guinea pig (Hashimoto et al., 2001). Epple et al. (2001) investigated the effects of a total extract from Z. piperitum fruit on food intake in rats and found that they failed to habituate to the stimuli.

The rust-red berries contain bitter, black seeds that are usually removed before the spice is sold. This spice is used whole or ground and is much used in Chinese cookery, especially with chicken and duck. It is one of the spices in the Chinese five-spice powder and is used in Japanese seven-spice seasoning mix. The leaves are dried and ground to make sansho, a Japanese spice. In the Goa and Konkan region of India the dried immature fruits of Z, rhesta are used for flavouring fish and chicken preparations.

In the past the ground bark was used as a remedy for toothache in the USA. Both bark and berries are used in traditional medicines and herbal cures to purify the blood, promote digestion and as an anti-rheumatic.

Was this article helpful?

0 0
Aromatherapy Natural Scents that Help and Heal

Aromatherapy Natural Scents that Help and Heal

You have probably heard the term Aromatherapy and wondered what exactly that funny word, „aromatherapy‟ actually means. It is the use of plant oils in there most essential form to promote both mental and physical well being. The use of the word aroma implies the process of inhaling the scents from these oils into your lungs for therapeutic benefit.

Get My Free Ebook

Post a comment